(6y^1/2)/(x^4/3)=(12y/x^1/3)

Simple and best practice solution for (6y^1/2)/(x^4/3)=(12y/x^1/3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6y^1/2)/(x^4/3)=(12y/x^1/3) equation:


D( x )

x^1 = 0

(x^4)/3 = 0

x^1 = 0

x^1 = 0

x = 0

(x^4)/3 = 0

(x^4)/3 = 0

1/3*x^4 = 0 // : 1/3

x^4 = 0

x = 0

x in (-oo:0) U (0:+oo)

((6*y^1)/2)/((x^4)/3) = ((12*y)/(x^1))/3 // - ((12*y)/(x^1))/3

((6*y^1)/2)/((x^4)/3)-(((12*y)/(x^1))/3) = 0

((6*y)/2)/((x^4)/3)-4*x^-1*y = 0

9*x^-4*y-4*x^-1*y = 0

x^-1*y*(9*x^-3-4) = 0

9*x^-3 = 4 // : 9

x^-3 = 4/9

-3 < 0

1/(x^3) = 4/9 // * x^3

1 = 4/9*x^3 // : 4/9

9/4 = x^3

x^3 = 9/4 // ^ 1/3

x = (9/4)^(1/3)

y/x = 0

x^-1*y = 0 // : y

x^-1 = 0

x należy do O

x = (9/4)^(1/3)

See similar equations:

| 5x+8-x=6(x-1) | | -1/9(-3/4)= | | 5m-3/2=6 | | (x^3)+(3x^2)+(-9x)-(12)=0 | | (x^3)+(3x^2)+(-4x)-(12)=0 | | y=-cos(5x) | | (x^3)+(3x^2)+(4x)-(12)=0 | | 9q-(q-4)=4q+(q+1) | | 7m^2=-6-17m | | (x^3)+(3x^2)+(-6x)-(12)=0 | | m-14=n | | (x^3)+(3x^2)+(6x)-(12)=0 | | (x^3)+(3x^2)+(Kx)-(12)=0 | | 3(z+6)=2(z-3)+z | | 6x-36=10x+5 | | -14=-4(8x-8)-7(6x-4) | | -4-40k=-4.5-39k | | -9.5a-6+12a=-2 | | x-1/2×1/2=1/8 | | C(10,2)=10!/(10-2)!) | | x^(2/5)-2x(1/5)-15=0 | | 15z-9-8z-4=5z-2 | | 9.1=((x-73.1)^2)/4 | | 10x-25=9x+20 | | 5q=(23/3) | | 3+48=m+3 | | 5(7n-8)+2(n+2)=75 | | (23/3)/5= | | (x+y)-(3x+y)= | | 33+y=33 | | -12+16=-2(x+8) | | 40+14j=(4j-13) |

Equations solver categories